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Particle capture in binary solidification
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We examine the interaction of a spherical foreign particle with a propagating
solidification front in a binary alloy. Depending on the material properties and
the speed of the front, the particle may be pushed ahead of the front, or engulfed
and incorporated into the solid phase. We apply numerical boundary integral and
continuation methods to determine the critical speed for particle capture, as a function
of the system parameters. We reconcile the differing predictions of previous theoretical
works, and show that many typical systems may obey a new scaling of the critical
speed, as obtained here. We show that due to constitutional undercooling, the presence
of solute decreases particle speeds by an order of magnitude below those for a
single-component system. We briefly consider the case of spherical bubbles, where
thermocapillary and solutocapillary effects play a large role.

1. Introduction
When a freezing front progresses through a liquid melt and encounters a foreign

particle, the particle may be engulfed by the front, or it may be rejected and pushed
ahead of the front. The outcome of this interaction plays a crucial role in issues such
as the strength of composites (Mortensen & Jin 1992; Asthana 1998; Deville et al.
2006), the geomorphology of frozen landscapes (Dash, Rempel & Wettlaufer 2006)
and the survival of cryogenically preserved cells (Bronstein, Itkin & Ishkov 1981;
Ishiguro & Rubinsky 1994; Karlsson & Toner 1996; Chang et al. 2007). Thus, a good
understanding of the particle–front interaction is essential in understanding these and
other processes.

The interaction between particles and freezing fronts has received much attention
over the years (e.g. Uhlmann, Chalmers & Jackson 1964; Aubourg 1978; Körber
et al. 1985; Asthana & Tewari 1993; Asthana 1998; Park, Golovin & Davis 2006).
Studies of particle capture may be classified as dealing with either engulfment by
an initially planar interface, or geometrical inclusion by dendrites. Past theoretical
models have generally considered the simpler planar front, as do we. Even so, there
are many physical processes involved. Particle engulfment or rejection depends on
liquid drag, intermolecular forces, heat flux, interfacial energies, particle geometry,
interfacial premelting and, in the case of binary solidification, solute transport and
constitutional undercooling.
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Accordingly, many models have been proposed. Asthana & Tewari (1993) reviewed
the field and concluded that an early model by Chernov, Temkin & Mel’nikova (1976,
1977) was relatively accurate in predicting critical speeds for experimental particle
capture in pure liquids. In that formulation, van der Waals repulsion and fluid drag
are balanced to obtain an instantaneous particle speed as a function of particle
distance from the front. The largest attainable particle speed is then the ‘critical
speed’ – freezing fronts moving at a faster rate will eventually overtake and engulf the
particle. Subsequent work by Rempel & Worster (1999, 2001) employed more accurate
drag approximations, removed assumptions on interfacial geometry and considered
the effects of interfacial energy, whereas Park et al. (2006) considered the additional
effects of density changes upon solidification and Marangoni effects (the latter in the
case of bubbles rather than solid particles). The stability of the solid–liquid interface
was explored by Hadji (1999, 2002, 2003), and other authors (Azouni & Casses 1998;
Catalina, Mukherjee & Stefanescu 2000; Garvin & Udaykumar 2003a , b) investigated
the unsteady problem, where the assumption of quasi-steady particle speed was
relaxed.

Most theoretical studies, including those given above, only consider solidification
of pure materials, whereas many situations of interest involve the solidification
of solutions or alloys. That case has received considerably less attention in the
literature despite its wide applicability. In this work, we investigate particle capture in
binary solidification, in which solute rejection by the solid phase causes constitutional
undercooling at the freezing front, thereby affecting the particle–front interaction. The
primary existing theoretical treatments of particle–front interaction in binary systems
are done by Temkin, Chernov & Mel’nikova (1977), Pötschke & Rogge (1989) and
Sasikumar & Ramamohan (1991). Other authors have also made attempts at solving
the binary system (Ahuja, Stefanescu & Dhindaw 1994; Kim & Rohatgi 1998), though
these efforts are considerably rougher. Nonetheless, all previous theoretical works
have involved substantial approximations to facilitate the derivation of analytical
solutions. Very recently, the advent of level-set methods and fast computers has
provided the opportunity for direct numerical simulation of particle capture in both
pure (Garvin & Udaykumar 2005, 2006; Garvin, Yang & Udaykumar 2007a , b) and
binary (Chang et al. 2007; Yang, Garvin & Udaykumar 2008) solidification. One can
more easily measure the behaviour of particle–front systems from these simulations
than from the typical experiments, and they also require fewer approximations than
analytical approaches. However, they remain time consuming, are presently restricted
to two-dimensional systems and do not provide any systematic exploration of particle
behaviour dependence on parameters. Finally, there is a plethora of experimental
results for particle inclusions in solidifying alloys, frequently in the context of metal–
matrix composites (e.g. Körber et al. 1985; Sekhar & Trivedi 1991; Wu, Liu &
Lavernia 1992; Pang, Stefanescu & Dhindaw 1994; Hecht & Rex 1997; Asthana
1998; Wilde & Perepezko 2000). Unfortunately, many of these deal with dendritic
solidification or are focused on creating materials with prescribed properties rather
than on investigating the fundamental mechanisms of particle capture. Moreover,
due to the variety of physical phenomena that can be involved, and the challenging
nature of the required experiments (Sen et al. 1997), it is difficult to reconcile differing
experimental systems and synthesize these studies to form a broader quantitative
theory of particle capture in solidification (Juretzko et al. 1998).

In light of this existing work, we seek to obtain systematic quantitative information
about the behaviour of three-dimensional particles in solidifying binary alloys. We
combine the approach of Rempel & Worster (1999, 2001), with a boundary-integral
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Figure 1. Diagram of axisymmetric particle and solidification front, showing important
dimensions. H0 is the height of the particle above the undisturbed interface, which may
differ from the T = Tm isotherm.

calculation of the solute concentration field and compute numerical solutions of the
derived equations.

2. Governing equations
We consider a spherical particle in a three-dimensional axisymmetric particle–

front system, shown in figure 1. As in Rempel & Worster (1999), the shape of
the solidification front is determined by matching the interfacial temperature at
thermodynamic equilibrium to a linear temperature field. The quasi-steady speed
of the particle is then found through a force balance involving viscous drag, van
der Waals and/or electrostatic double-layer forces and buoyancy. We allow for the
possibility of differing thermal conductivities of the particle and its surroundings,
as well as density changes upon solidification. For the case of freezing of bubbles,
there are also thermocapillary and solutocapillary effects. Although the particular
combination of equations that we present here is new, the physics of each individual
piece of our model is well understood. Hence, we do not discuss the origin of these
equations in detail, and instead focus on the results of their combination.

2.1. Solute concentration

Let ρ and θ be spherical coordinates centred on the particle (figure 1). The solute
concentration C(ρ, θ) is governed by convection and diffusion, with rejection at the
solidification front and no flux through the particle,

∂tC + (U · ∇)C = DC∇2C in the melt, (2.1a)

DC∇C · nf = −C(1 − k)V f · nf at the front, (2.1b)

∇C · np = 0 at the particle, (2.1c)

C → C∞ as Z → ∞, (2.1d)
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where U is the fluid velocity in the lab frame, V f is the front velocity in the lab
frame, k is the segregation coefficient, DC is the solute diffusion coefficient, C∞ is the
concentration at infinity and nf and np are the outward normals on the solidification
front and particle, respectively. We are interested in quasi-steady states, so (2.1a)
becomes −Vf CZ + (U · ∇)C = DC∇2C.

Previous authors have frequently taken C to be constant in the vertical or radial
direction. While this is a good approximation directly underneath the particle, the
far-field condition for C is exponential decay in the vertical direction, and constant
horizontally. Likewise, we expect that the true gradient of C near the particle (but not
directly underneath it) will be neither horizontal nor vertical, but oblique. Thus, we
do not make any assumptions on C at this point.

2.2. Interfacial shape

For slow solidification, we use the frozen-temperature approximation (Chernov et al.
1977), which assumes a quasi-steady temperature distribution with instantaneous
diffusion of latent heat,

T (ρ, θ) = Tm + GT

{[
1 +

k0 − kp

2k0 + kp

(
R

ρ

)2
]

Z + H

}
. (2.2)

Here, GT is the imposed or far-field temperature gradient, Tm is the equilibrium
melting temperature, R is the radius of the particle and kp and k0 are the thermal
conductivities of the particle and the surrounding material, respectively. We make
the approximation that the thermal conductivity of the surrounding material is k0 in
both liquid and solid phases. Z is the vertical coordinate (Z = −ρ cos θ), and the Tm

isotherm is located at Z = −H far from the particle.
The interfacial temperature is the equilibrium melting temperature as modified by

the generalized Gibbs–Thompson effect (Ratke & Voorhees 2002), and constitutional
and kinetic undercooling (Davis 2001), giving,

Ti = Tm

[
1 − �Ps�

LV

−
(

1 − ρs

ρ�

)
�P�0

LV

]
+ mC − Vn

μ
, (2.3)

where LV is the latent heat per solid volume, ρs , ρ� are the densities, m is the liquidus
slope, Vn is the speed of the front in the normal direction and μ the kinetic coefficient.
�Ps� is the pressure difference between solid and liquid phases at the interface, and
�P�0 is that in the liquid phase between the interface and the far field. The solid–liquid
pressure jump in this system is due to van der Waals forces (Israelachvili 1991) and
surface tension, giving,

�Ps� =
A

6πD3
+ Γ κ. (2.4)

Here, A is the Hamaker constant, D is the radial distance between the particle and
the interface, Γ is the interfacial energy and κ is the curvature. When ionic solutes are
present, there may also be an entropic pressure at the interface, due to compression of
the electrostatic double layer by the proximity of the particle. Since this is a pressure
acting on counterions in a thin layer on the liquid side of the solidification front, we
account for it in �P�0, the additional liquid pressure above atmospheric at the front.
For a 1:1 electrolyte (where the ions each have unit charge) in the weak overlap
approximation (Israelachvili 1991),

�P�0 = Ωe−κDD, (2.5)
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where κD is the inverse Debye length, and Ω is a parameter approximating the strength
of the double layer. Ω is bounded by 64kBT (NA/M)C and the inverse Debye length

κD is
√

2NACe2/Mεrε0kBT . We do not attempt a more precise determination of Ω ,
as such would require knowledge of the electric potential on the solidification front
and on the particle. In addition, although both κD and Ω depend on the interfacial
solute concentration and temperature, we calculate κD and Ω as constants using
the approximations T ≈Tm + mC∞/k and C ≈ C∞/k because it will be seen that the
relative variation in these quantities is small. Finally, note that when an electrostatic
double layer is present, ionic solutes form a thin layer of higher concentration at the
interface, magnifying the constitutional undercooling. We neglect this effect, since it
can be incorporated into the liquidus slope m.

Combining (2.2) and (2.3) with ρ = R + D(θ) yields a second-order ODE for the
interface shape, given by the function D(θ). Far away from the particle, the freezing
front is planar and located at Z = −H0, where in general H0 �= H due to undercooling
of the front. The boundary conditions are then D′(0) = 0 and H0 − (R + D) cos θ → 0
as θ → π/2. Because H0 is defined as the position of the front far from the particle,
we find in terms of H ,

H0 = H − mC∞

GT k
+

Vf

GT μ
. (2.6)

2.3. Particle speed

The particle experiences forces due to viscous drag, van der Waals and double-layer
repulsions and buoyancy. Buoyancy is given by Fg = − (4/3)πR3(ρp − ρ�)g, where ρp

and ρ� are the densities of the particle and melt, and g is the acceleration of gravity.
The other forces may be calculated as integrals of their respective pressures,

F = 2π

∫ π/2

0

PR2 sin θ cos θ dθ. (2.7)

Because we are primarily interested in conditions for particle capture, we assume
that the particle is sufficiently close to the solidification front, such that viscous drag
may be calculated using a lubrication approximation (Rempel & Worster 1999). Then,
to leading order, the fluid flow between the particle and the front is tangential with
speed,

U (ρ, θ) =
1

2ηρ
(ρ − R)(ρ − R − D)

∂Pvisc

∂θ
, (2.8)

where η is the viscosity of the fluid and Pvisc is its pressure. Calculating flux

through a surface of constant θ , we obtain q(θ) = 2π sin θ
∫ R+D

R
U (ρ, θ)ρ dρ = − (π/

6η) sin θD3∂Pvisc/∂θ . Conservation of mass under the particle gives q(θ) = −
π(R sin θ)2[Vp − (1 − ρs/ρ�)Vf ], so solving for Pvisc gives,

Pvisc = −6η[Vp − (1 − ρs/ρ�)Vf ]R2

∫ π/2

θ

D−3 sin θ dθ. (2.9)

As before, the van der Waals pressure is

PvdW =
A

6πD3
, (2.10)

and the double-layer repulsion is

PDL = Ωe−κDD. (2.11)
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Requiring FvdW + FDL + Fvisc + Fg = 0 yields an expression for the particle speed
Vp as a function of the parameters, the solute concentration and the particle–front
configuration.

We also allow for the possibility of the solidification front meeting a spherical bubble
containing a passive gas, rather than a solid particle. In this case, the appropriate
boundary condition at the bubble surface is no stress, −η(∂U/∂ρ) = (1/R)(∂σ/∂θ),
and the liquid velocity becomes Ub(ρ, θ) = ((1/2)ηρ)(ρ −R−D)(ρ −R+D)∂P b

visc/∂θ −
(1/ηρ)(ρ − R − D)∂σ/∂θ . Here σ is the liquid–gas surface tension, and the scalar U

is the tangential component of liquid velocity. We obtain,

P b
visc = −3

2
η[Vp − (1 − ρs/ρ�)Vf ]R2

∫ π/2

θ

D−3 sin θ dθ − 3

2

∫ π/2

θ

∂σ

∂θ
D−1 dθ, (2.12)

and further assume that surface tension depends linearly on solute concentration and
temperature, i.e.

∂σ

∂θ
=

∂σ

∂T

∂T

∂θ
+

∂σ

∂C

∂C

∂θ
, (2.13)

where ∂σ/∂T and ∂σ/∂C are constants.

2.4. Scaling and non-dimensionalization

As in Rempel & Worster (1999), we non-dimensionalize distances according to
h0 = H0/R, z = Z/R and δ = D/εR, and speeds as vp = Vp/W , vf =Vf /W , with
ε4 = ATm/6πLV GT R4 and W 4 = A3LV GT /67π3η4R4Tm. We express the concentration
as

C =
C∞

k
c =

C∞

k
[c0 + (1 − k)vf P e c1], (2.14)

where c0 = 1 − (1 − k)[1 − exp(−Pevf (z + h0))] is the one-dimensional concentration
field for binary solidification in the absence of a particle and Pe is the Péclet number.

Typical values of the dimensional parameters are shown in table 1, and the
corresponding non-dimensional parameters are in table 2. It is seen that for small
particles in common systems, Pe 	 1 and m̄ 
 1, so we expand in powers of Pe,
retaining terms of O(m̄Pe), to obtain

∇2c1 = 0, (2.15a)

h0 −
[
1 + εδ +

k̄

1 + εδ

]
cos θ = − ε

δ3
− m̄P evf [c1 + (1 + εδ) cos θ − h0]

−ρ̄ωe−κ̄Dεδ − γ κ̄ + vf μ̄−1(1 − z · nf ), (2.15b)

vp = ρ̄vf +

[∫ π/2

0

(εδ−3 + ωe−κ̄Dεδ) sin θ cos θ dθ − ḡ

]/∫ π/2

0

δ−3 1
2
sin3θ dθ, (2.15c)

with boundary conditions δ′(0) = 0, h0 − (1+ εδ) cos θ → 0 as θ → π/2, ∇c1 · nf =0 on
the front, ∇c1 · np = z · np on the particle and c1 → 0 as |x| → ∞. The non-dimensional
curvature is

κ̄ =
−1

1 + εδ

{
2 + 3

(
εδ′

1 + εδ

)2

− εδ′′

1 + εδ
−

[(
εδ′

1 + εδ

)3

+
εδ′

1 + εδ

]
cot θ

}
/[

1 +

(
εδ′

1 + εδ

)2
]3/2

. (2.16)
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Symbol Description Saline (bubble) Al–Cu (bubble)

R Particle radius (m) 10−5 10−5

GT Temperature gradient (K m−1) 104 104

Tm Melting temperature (K) 273 930
LV Latent heat (Jm−3) 3.3 ×108 9.5 ×108

A Hamaker constant (J) 1 ×10−20 1 ×10−20

m Liquidus slope (K m3 kg−1) −0.09 −0.1
DC Solute diffusion coefficient (m2 s−1) 1 ×10−9 3 ×10−9

C∞ Far-field solute concentration (kgm−3) 9 48
k Segregation coefficient 0.12 0.14
Γ Interfacial energy (Jm−2) 0.03 0.16
μ Kinetic coefficient (m K−1 s−1) 4 ×10−6 0.2
η Viscosity (Pa s) 1.8 ×10−3 1.4 ×10−3

ρ� Liquid density (kg m−3) 1 ×103 2.4 ×103

ρs Solid density (kgm−3) 9.2 ×102 2.6 ×103

ρp Particle density (kgm−3) 1 ×103 (1.3) 2.4 ×103 (0.38)
k0 Liquid thermal conductivity (Wm−1 K−1) 0.56 95
kp Particle thermal conductivity (Wm−1 K−1) 0.56 (0.02) 95 (0.06)
Ω Double-layer strength (Jm−3) � 1.8 ×108 –
κ−1

D Debye length (m) 2.7 ×10−10 –
∂σ/∂T Thermocapillary (Jm−2 K−1) (−1.4 ×10−4 ) (−1.5 ×10−4 )
∂σ/∂C Solutocapillary (Jm kg−1) (3.7 ×10−5 ) (3.0 ×10−5 )
W Velocity scale (m s−1) 3.4 ×10−7 4.5 ×10−7

VMS Mullins–Sekerka speed (m s−1) 1.49 ×10−6 8.80 ×10−7

Table 1. Typical values of physical parameters. Most values are obtained from Kurz &
Fisher (1992) and Rempel & Worster (2001). Kinetic coefficients are rough estimates based on
Wettlaufer, Worster & Huppert (1997) and Hoyt & Asta (2002). k0 is taken from the thermal
conductivity in the liquid phase. Ω and κD in this table are calculated as described in the text.
Thermocapillary and solutocapillary coefficients are estimated from Lide (1991) and Poirier
& Speiser (1987). Values for a bubble are indicated in (parentheses) where they differ. The
Mullins–Sekerka threshold for front stability is computed according to Mullins & Sekerka
(1964), ignoring density change, kinetic undercooling and the electrostatic double layer.

For a bubble, (2.15c) becomes

vb = ρ̄vf + 4

[
−

∫ π/2

0

(
α

ε
(1 + k̄) sin θ +

β

ε
vf P e

∂

∂θ

[
cb
1 + cos θ

]) 1

2
sin2 θδ−1 dθ

+

∫ π/2

0

(
εδ−3 + ωe−κ̄Dεδ

)
sin θ cos θ dθ − ḡ

]/∫ π/2

0

δ−3 1

2
sin3θ dθ. (2.17)

Note that (2.17) requires the solute concentration at the bubble, rather than at the
solidification front. We denote the concentration at the bubble as cb

1, to emphasize
this fact.

3. Numerical implementation
The primary numerical challenge for this system is solving the Laplace equation

(2.15a) on a semi-infinite and nearly singular domain that includes a narrow gap
between the particle and the solidification front. We can formulate the solution to
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Parameter Definition Saline (bubble) Al–Cu (bubble)

ε Hamaker constant (ATm/6πLV GT R4)
1
4 1.4 ×10−3 1.5 ×10−3

m̄ Liquidus slope −mC∞(1 − k)/kGT R 59 290

Pe Solute Péclet number WR/DC 3.4 ×10−3 1.5 ×10−3

γ Interfacial energy Γ Tm/LV GT R2 0.025 0.16

μ̄−1 Kinetic undercooling W/μGT R 0.85 2.3 ×10−5

ω Double-layer strength ΩTm/LV GT R � 1.5 ×103 –

κ̄−1
D Debye length κ−1

D /R 2.7 ×10−5 –

ρ̄ Density change 1 − ρs/ρ� 0.083 −0.083

ḡ Buoyancy (2/3)(ρp − ρ�)gTm/LV GT 0 (−5.4 ×10−7) 0 (−1.5 ×10−6)

k̄ Thermal conductivity (k0 − kp)/(2k0 + kp) 0 (0.5) 0 (0.5)

α Thermocapillary
3

2

∂σ

∂T
Tm/LV R (−1.7 ×10−5) (−2.2 ×10−5)

β Solutocapillary
3

2

∂σ

∂C
TmC∞(1 − k)/kLV GT R2 (3.0 ×10−3) (1.2 ×10−2)

Table 2. Non-dimensional parameters for representative systems.

(2.15a) as a single-layer potential over the freezing front and the particle,

c1(x) =

∫
∂Ω

λ(ξ )G0(x; ξ ) dAξ, (3.1)

where G0(x; ξ ) = − 1/4π|x − ξ | is the free-space Green’s function. The unknown
potential density λ satisfies to O(Pe) the integral equation

1

2
λ(x) +

∫
∂Ω

λ(ξ )∇xG0(x; ξ ) · n(x) dAξ =

{
0 if x on the particle,

z · n(x) if x on the front.
(3.2)

Here Ω designates the melt, x ∈ ∂Ω , and n(x) is the unit normal pointing into
the melt. On the axis θ = 0, we require that the single-layer potential be smooth.
The axisymmetric double integral over area ∂Ω is reduced to a single integral over
θ as in Miksis (1981) and Miksis, Vanden-Broeck & Keller (1981). The boundary
integral gives rise to both logarithmic and removable singularities as ξ → x, as well
as to highly peaked ‘nearly singular’ integrands due to small separations between
the particle and the freezing front. We employ the method of Longuet-Higgins &
Cokelet (1976) to regularize both logarithmic and near-singular terms: an integral of
the form

∫
H (x)f (x) dx, where H (x) is smooth and f (x) contains a logarithmic or

near singularity at x = x0, can be written as∫
H (x)f (x) dx =

∫
H (x)[f (x) − g(x)] dx

+

∫
[H (x) − HN (x)]g(x) dx +

∫
HN (x)g(x) dx, (3.3)

where HN (x) is the Taylor expansion of H (x) at x0 of the order N , and g(x) is a
function such that f (x) − g(x) is bounded and

∫
HN (x)g(x) dx can be determined

analytically. Thus, the first two integrals on the right-hand side of (3.3) can be
calculated numerically using the trapezoidal rule, and the last integral is found
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Figure 2. Sample particle-pushing solutions. The system is oriented the same as in figure 1.
The thin grey line indicate h0, the position of the flat front (far from the particle). The points
are the calculated front location and concentration field, with the concentration field being
evaluated at the front. (a) Particle in fresh water at h0 = 1.0, vp = 2.34. (b) Particle in saline at
h0 = 1.0, vp = 0.080. (c) Particle in saline at h0 = 0.93, vp = 0.156.

analytically. The order N of the Taylor expansion is chosen to minimize the error in
the trapezoidal integration of the second integral. We use N = 0 and 2. Note that (3.3)
was originally developed to regularize true singularities. However, in our problem one
can find g(x) such that (3.3) applies to near-singularities as well – we use g(x) = 1/p(x)
and g(x) = log p(x), where p(x) is a parabola having its minimum at the point of
near singularity.

Equations (2.15b), (2.15c) and (3.2) are solved for a given h0 by finite difference
collocation, using on the order of 100 mesh points for θ ∈ [0, π/2). In order to obtain
better accuracy in the boundary integrals, we upsample the smooth quantities δ, c and
λ using spline interpolation, before computing the discretized integrand. It is found
that upsampling by a factor of 3 is sufficient. Figure 2 shows example solutions.

Solutions are obtained for a range of h0 by means of Euler–Newton continuation
in arclength, with adaptive stepping based on convergence and turning angle (Keller
1977; Allgower & Georg 1979).

4. Results and discussion
4.1. Speed–height curve

Equations (2.15a), (2.15b) and (2.15c) or (2.17) form a system for the unknowns c1,
δ and vp , with one free parameter h0. In contrast to the pure solidification system,
the solutions in the binary case couple to the front speed vf due to solute rejection
at the solidification front and accumulation beneath the particle. (Solutions of the
pure system involve vf only if ρ̄ �= 0.) Depending on how we choose vf , we may
calculate one of two types of solutions to the system. If we require vf = vp , so that the
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Figure 3. Speed versus height for a particle in saline, using parameters from table 2. We show
both travelling-state and fixed-front-speed cases. The thick line indicates travelling states of
the system, where vp = vf . The light lines show the particle speed vp computed for fixed values
of the front speed vf . These curves intersect the travelling-state curve at their respective vf ’s.

front and particle move together, the solutions at every h0 correspond to quasi-steady
travelling states, i.e. particle-pushing behaviour. However, we may also take a fixed
front speed (vf =constant), corresponding to typical experimental solidification, where
the solidification rate is independent of the particle behaviour. In this case, there are
at most two values of h0 satisfying vf = vp(h0, . . .), and hence most of the solutions
do not correspond to travelling states, but rather to quasi-steady non-equilibrium
behaviour of the particle.

Figure 3 shows particle speed versus height for the example saline system in table 2,
under both travelling-state and fixed-front-speed conditions. The travelling-state curve
represents all possible equilibria for the given particle and material parameters,
whereas the fixed-front-speed curve provides information about the height evolution
of a particle encountering a front moving at some vf . In both cases, it is seen that
if the particle and the front are far apart (h0 is large), the particle has low speed.
At closer range (h0 ≈ 1), the particle speed is large due to intermolecular repulsion.
Finally, if h0 < 1 and the particle is deep in the solid phase, the speed is again small
due to viscous drag.

4.2. Critical speed for capture

By definition, the maximum of the travelling-state curve is the maximum of the
range of possible front speeds for particle pushing. This is generally denoted as the
capture or critical speed, vc = maxh0

vp . No travelling states exist when vf > vc, so if
a solidification front encounters a particle, the particle is overtaken and captured by
the solid phase. However, at lower front speeds when vf < vc, in general a particle
will be rejected from the solid phase and pushed ahead of the front. Thus, the speed
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vc and its dependence on parameters are of great interest in studies involving particle
capture.

Figure 4 shows the dependence of vc on the non-dimensional parameters, as they
vary from the nominal values for saline. For a particle, m̄ and Pe only appear
jointly in the equations, so they have been combined here for convenience.† With the
exceptions of γ and large values of μ̄−1, the plotted curves for all parameters are
nearly linear over large ranges of the parameter values. Based on these computations,
we may determine the scaling of vc in the vicinity of the saline parameters, with the
scaling exponents found to the nearest 0.05,

vc ∝ ε0.35γ 0.30(m̄P e)−0.65e0.70k̄(1 − ρ̄)−0.35, (4.1)

or equivalently in dimensional form,

Vc ∝ R−1.30G0.35
T Γ 0.30

(
Tm

LV

)0.30

A0.35η−0.35

(
ρs

ρ�

)−0.35

×
(

|m|C∞(1−k)

Dck

)−0.65

exp

(
0.70

k0 − kp

2k0 + kp

)
. (4.2)

We find little or no dependence on the parameters μ̄−1, κ̄−1
D , and ω, representing

kinetic undercooling and the electrostatic double layer. However, the dependence on
γ , representing interfacial energy, is more complex than is made apparent by (4.1).
The γ 0.30 scaling in (4.1) is the local slope near our model saline system, γ = 0.025,
and does not hold for significantly different values of γ . For instance, if we ignore

† The combination M = m̄Pe vf is sometimes referred to as the morphological number in studies
of interfacial stability. However, we are only concerned with planar solidification in this work.
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surface tension or assume its effect is negligible, vc ∝ γ 0, and (4.2) becomes

Vc ∝ R−0.70G0.65
T . . . , (4.3)

with no dependence on melting temperature Tm, latent heat LV or interfacial energy
Γ . Whereas, if we take vc ∝ γ 0.75 corresponding to large γ , we obtain,

Vc ∝ R−2.20G−0.10
T

(
Γ Tm

LV

)0.75

. . . . (4.4)

In general, for vc ∝ γ a(γ ) where the exponent a is a slowly changing function of γ ,

Vc ∝ R−0.70−2aG0.65−a
T

(
Γ Tm

LV

)a

. . . . (4.5)

In (4.3)–(4.5), terms that remain unchanged from (4.2) have been omitted. Further,
in all cases the kinetic undercooling and electrostatic double layer are found to be
too weak to affect the capture speed. We attribute the lack of influence of the kinetic
undercooling to the fact that it acts over the entire interface, not merely the portion
under the particle, while the double layer has little effect because the Debye length
is smaller than van der Waals premelting distances for our parameters. Finally, note
that figure 4 shows the results of varying one non-dimensional parameter at a time,
while keeping all others constant. Therefore, (4.1) and subsequent variations do not
encapsulate effects that arise from changing multiple parameters simultaneously; for
example, if the thermal conductivity of the particle was less than that of the melt
(k̄ > 0), the solidification front may become convex, and increasing the interfacial
energy then lowers the critical speed rather than raising it.

The predictions of (4.3) and (4.4) may be compared to previous work on binary
particle capture. The following equations are rewritten in our notation for convenience.
Temkin et al. (1977) obtained an expression,

Vc ≈ 1.3R−2

(
Γ Tm

LV

) (
|m|C∞

kDC

)−1
/

log

(
18πη

kDC

|m|C∞

Γ Tm

ALV

)
, (4.6)

making the assumption that the effect of GT is negligible. Later, Pötschke & Rogge
(1989) ignored the Gibbs–Thomson undercooling due to interfacial energy, and fitted
a function to their numerical results in an intermediate range of parameters

Vc ≈ 0.053R−1

√
AGT DCk

η|m|C∞

kp

k0

. (4.7)

(Sasikumar & Ramamohan 1991, do not present any scaling results, but show a
graph which appears to give Vc ∝ C−1

∞ .) Clearly (4.6) and (4.7) differ substantially;
this was noted by Pötschke & Rogge (1989), but not fully explained. However, by
comparing these scalings to our numerical results (4.3) and (4.4), we find that much
of the difference between Temkin et al. (1977) and Pötschke & Rogge (1989) may
be attributed to the presence or absence of interfacial energy, i.e. the dependence on
γ . It is also worth pointing out that for typical parameter values of saline (table 2),
we compute an entirely different scaling than either previous work, namely (4.2), and
this behaviour persists for roughly a factor of 10 in either direction in the value of
γ (figure 4). Hence, we expect that a large range of experimental setups may display
behaviour not described by either of the previous works, but rather by some form of
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(4.5), e.g. (4.2). In general, the relationship between Vc and R may change significantly
depending on the influence of interfacial energy on the front shape.

On the other hand, all predicted capture speeds are quite similar. Using parameters
for the saline system (table 1), our calculations yield Vc =5.3 ×10−8 m s−1. Evaluating
(4.6) gives Vc =1.7 ×10−7 m s−1 and (4.7) gives Vc = 1.5 ×10−8 m s−1. However, we
consider the precise numerical values to be less important than the scaling behaviour,
because several of the parameters required for the calculation are known only
approximately.

For our nominal parameters for aluminium–copper, we obtain, vc ∝ ε0.25

γ 0.50(m̄P e)−0.75e0.50k̄(1 − ρ̄)−0.25, where again the exponent on γ is taken locally
and kinetic undercooling and electrostatic double-layer effects are negligible. This
translates to a dimensional scaling of

Vc ∝ R−1.50G0.25
T

(
Γ Tm

LV

)0.50

A0.25η−0.25

(
ρs

ρ�

)−0.25

×
(

|m|C∞(1−k)

Dck

)−0.75

exp

(
0.50

k0 − kp

2k0 + kp

)
, (4.8)

which is reasonably similar to the saline scaling (4.2).
We also compute the vc scaling of fresh water, for verification and comparison.

This is shown in figure 5. We obtain vc ∝ ε−0.25γ 0.30(1 − ρ̄)−1 and in dimensional form

Vc ∝ R−1.35G0.01
T Γ 0.30A0.69η−1

(
ρs

ρ�

)−1

. (4.9)



312 J. C. T. Kao, A. A. Golovin, and S. H. Davis

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fresh water vc = 2.69 

aluminum vc = 3.82 

aluminum–copper
vc = 0.19

h0: particle hight h0: particle hight

v p
: 

p
ar

ti
cl

e 
sp

ee
d

Traveling-state curves

0.85 0.90 0.95 1.00 1.05
0

0.01

0.02

0.03

0.04

saline

aluminum–copper

aluminum fresh water

εδ
(0

):
 p

ar
ti

cl
e-

fr
o
n
t 

g
ap

Particle-front gap

saline
vc = 0.16

(a) (b)

Figure 6. Comparison of pure and binary systems. (a) The presence of solute reduces particle
speeds dramatically. (b) Particle–front gap as a function of particle height for pure and binary
systems (under the travelling-state condition). The gap is greatly increased for binary systems.
The loops are due to the multi-valued nature of the speed–height curves as seen in (a).

These results compare well with the findings of Rempel & Worster (2001), who found
Vc ∝ R−4/3Γ 1/3A2/3η−1 and no dependence on GT . The good agreement here in the
pure case suggests that a closer examination of the differences between our findings
and previous work in the binary case may be worthwhile.

4.3. Effects of solute

Perhaps the most important effect of solute in a particle–front system is a drastic
reduction in particle speeds. Due to the large value of the non-dimensional liquidus
slope, the effect of solute accumulation beneath the particle is strong, even though
the relative change in solute concentration may be less than 1 %. The net result is
to significantly impede the solidification front below the particle. Thus, although van
der Waals repulsion provides the force pushing the particle, the strength of this force
is governed by the particle–front gap, which in turn is strongly determined by solute
concentration and the resulting undercooling. Solute, therefore, increases the gap and
reduces considerably the effect of the repulsive van der Waals force. Figure 6(a) shows
that this results in particle speeds an order of magnitude slower in the binary system
than in the pure system.

By consideration of the parameters in the non-dimensionalized equation (2.15b), it
is seen that a calculation of particle capture in any system that may contain impurities
must take into account the solute effect (i.e. constitutional undercooling) whenever
ε � m̄Pe, or equivalently, if (ATm/6πLV GT R4)1/4 � |m|C∞(1 − k)/kGT R. This is the
case in our example system, where ε = 0.0014 and m̄P e = 0.20. Figure 6(b) shows the
particle–front gap as a function of particle height for both fresh water and saline
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cases. The strong effect of constitutional undercooling is apparent. (The loops in the
curves for binary systems are due to the multi-valued nature of the speed–height
curves as seen in figure 6a.)

For a given (fixed) front speed, the critical speed Vc decreases as the particle radius
R increases. Therefore, in lieu of a critical speed, for a fixed Vf we may define a
critical radius Rc, where particles smaller than Rc are rejected and particles larger than
Rc are captured, causing a segregation or sorting of particles. This is of importance,
for instance, in solidification of composite materials with particles of non-uniform
sizes. In figure 7, we plot the predicted fate of particles: radius versus front speed.
Particles that fall to the upper right on this diagram will be captured, while particles
in the lower left are rejected. Again, the difference between pure and binary systems
is apparent as a large decrease in the critical speed or equivalently a decrease in the
critical radius – particles falling in the middle of the diagram, between the sets of
lines, are captured in a binary system but rejected by the pure system. We also see the
scaling of Vc vs R in the slope of the dividing lines between capture and non-capture.
In figure 7 all non-dimensional parameters are varied simultaneously as R varies,
whereas in figures 4 and 5, each non-dimensional parameter is varied individually.
Still, we find similar scalings as before, with the pure system obeying Vc ∝ R−4/3, and
the binary system changing in behaviour between Vc ∝ R−1.7 and Vc ∝ R−1, depending
on the value of R. Although a direct comparison to figure 7 is difficult due to the
complexity of these systems, we refer the reader to the experimental studies Körber
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et al. (1985), Ahuja et al. (1994) and Hecht & Rex (1997), which also present Vc vs R

in binary solidification.

4.4. Interfacial stability

It is well known that initially planar solidification fronts in binary alloys can undergo
instability, leading to a variety of morphologies, including cellular and dendritic
solidification (Davis 2001). However, an investigation of the effect of a foreign
particle on the stability of the front is beyond the scope of this work; many papers
have been devoted to this subtopic alone (Hadji 1999, 2002, 2003). Instead, we
note that the Mullins–Sekerka limits for planar stability are VMS = 1.49 ×10−6 and
8.80×10−7 m s−1 for our representative saline and aluminium–copper systems (table 1),
whereas the corresponding critical speeds for capture of an R = 10−5 m particle are
Vc = 5.3×10−8 and 8.7×10−8 m s−1. A comparison with Vc is also shown in figure 7, for
a range of particle radii. In general, the Mullins–Sekerka threshold of stability remains
significantly faster than the capture speed for particles of R = 10−5 m and larger.

4.5. Quasi-steady particle dynamics

To determine the actual evolution of the particle height, one must refer to the
fixed-front-speed curve, in conjunction with the relation

dh0

dt
= vp − vf . (4.10)

For instance, at large h0, the particle speed is small, so h0 decreases, i.e. the front
approaches the particle. As h0 decreases, vp increases. If vf < vc, eventually a particle
height is reached such that vp = vf and dh0/dt =0, i.e. the particle has settled
at an equilibrium height above the front. This is a stable equilibrium, because
(∂vp/∂h0)vf

< 0. The particle is pushed ahead of the front in this position, unless
an external perturbation decreases the particle height below the second (unstable)
equilibrium. On the other hand, if vf > vc, dh0/dt is always negative, and the particle
is captured even in the absence of perturbations.

In the case of particle capture, a quantity of interest is the displacement of captured
particles caused by the passage of the freezing front. This plays a role in the uniformity
or lack thereof of solidified composites (Hecht & Rex 1997; Asthana 1998; Dash et al.
2006). This displacement is calculated as �Z =

∫ ∞
−∞ Vp(H0(t)) dt . Employing (4.10) to

make a change of variables, we obtain

�Z =

∫ ∞

−∞

Vp(H0)

Vf − Vp(H0)
dH0. (4.11)

Clearly, it is necessary that Vp(H0) → 0 as H0 → ∞, in order for �Z to be bounded
for a particle starting at infinity. Thus, without any finite initial position given, �Z

can only be calculated with zero buoyancy and no solidification density change.
Because both of our example systems have density change on solidification, we
correct this by making the replacements Vp → Vp − ρ̄Vf and Vf → Vf − ρ̄Vf , resulting
in displacement relative to the liquid phase, rather than displacement relative to the
solid phase. Finally, because the calculation of �Z requires the knowledge of Vp at
all values of H0, including those for which the particle is far from the front (where the
lubrication approximation of drag is no longer valid), we calculate viscous drag on
the particle at large H0 by employing the result of Brenner (1961) for spheres moving
perpendicularly to a wall. Because both expressions for viscous drag are expected to
underestimate the drag force when used beyond their ranges of validity, Vp is taken
to be the smaller of the two values calculated via lubrication and Brenner’s result.
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Figure 8. Displacement of captured particles in saline. (a) Displacement versus front speed
at R= 10−5 m. (b) Displacement versus particle radius at Vf = 3 ×10−7m s−1.

We further require that Vp =0 when the particle is embedded in the solid, which is
taken to correspond to h0 = 0, and we approximate the van der Waals repulsion for
a sphere far from the interface to be FvdW = A/6Rh0(h0 − 1)2.

Figure 8 shows the resulting displacement of captured particles as a function of
radius and front speed. It can be seen that as Vf → Vc, the displacement blows
up, reflecting a transition to particle-pushing behaviour. The blow-up occurs as
(Vf − Vc)

−1/2, assuming Vp is quadratic near its maximum. However, observe that
displacements are generally smaller than the particle radius, often by orders of
magnitude. This suggests that any particle experimentally observed to be moved large
distances by the passage of a fixed-velocity front may have been travelling in the
stable pushing state, and been captured due to an external disturbance or an effect
not described by the present theory.

4.6. Bubbles

Finally, we have also derived equations for the case of bubbles instead of solid
particles. However, the thermocapillary migration rate of bubbles is generally orders
of magnitude faster than typical freezing front speeds. For example, for the saline
parameters of table 1, the Young–Goldstein–Block thermocapillary speed (Young,
Goldstein & Block 1959) of an R =10−5 m bubble is between 2.5 ×10−3 and 2.7 ×
10−3 m s−1, depending on the orientation of the thermal field with respect to the
gravity. Even the presence of a nearby solid wall only decreases the migration speed
by a factor proportional to D/R at best (Meyyappan, Wilcox & Subramanian 1981).
Furthermore, the presence of salt in the water exacerbates the problem because ∂σ/∂C

is positive for this system (as well as in our other system, aluminum–copper). As the
concentration gradient is negative, solutocapillary flow enhances the thermocapillary
migration rather than counteracting it.

This suggests that travelling states are extremely unlikely, and so we calculate
only fixed-front-speed curves for bubbles. These are shown in figure 9, for
Vf =0.2 × W =6.8 ×10−8 m s−1, with and without solutocapillary flow, with reversed
solutocapillary flow, and for a bubble in fresh water. The vertical scale is logarithmic,
in order to accommodate the large range. (Some example front shapes are shown
in figure 10.) Because our equations were derived for slow flows and small particle–
front separations, they become increasingly inaccurate for large h0 and large vp .
Nonetheless, we still predict large h0 thermocapillary-only speeds of the same order
of magnitude as found using the equation of Young et al. (1959).

For bubbles with combined thermocapillary and solutocapillary effects, and bubbles
with only thermocapillary effect, it is seen that even when the bubble is deep into the
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solid, the speed remains large, at least an order of magnitude faster than both the
critical speed for particle capture and the Mullins–Sekerka stability limit of the planar
interface (table 1). This high bubble speed is because capillary migration is faster if
the bubble is further from the front, and constitutional undercooling due to solute
accumulation ensures a large bubble–front gap. (Although not shown in figure 9, we
observe that increasing the front speed enhances this effect by increasing the solute
concentration at the front.) Furthermore, when significant solute accumulation exists,
the solutocapillary flow greatly increases bubble speeds beyond the thermocapillary-
only speeds.

On the other hand, we find that if the sign of the solutocapillary coefficient β is
negative (e.g. for air bubbles in an ethanol and water mixture), the capillary migration
of the bubble may reverse at small separations due to the high solute gradient, leading
to capture of the bubble. This is shown as the dashed line in figure 9.

However, in all cases capillary migration increases with distance from the front;
even when the travelling state exists, it is unstable. These results suggest that bubbles
will be only captured in the solid if they originate extremely close to the interface,
for example by nucleation. Although nucleation at the front is a common occurrence,
due to lower gas solubility in the solid phase than in the liquid phase, the nucleation
process is outside the scope of this work and we shall not examine this aspect in
further detail. We instead refer the reader to Rogerson & Cardoso (2000) and Wei,
Huang & Lee (2003) for investigations of bubble nucleation, Park et al. (2006) and
Hadji (2007) for investigations of bubble speed in pure solidification and Wang,
Mukai & Lee (1999) which examines solutocapillary migration near a solidification
front (but neglects the thermal gradient).

5. Conclusion
We have examined the interaction of a foreign particle with a solidification front

in a binary alloy. We have derived equations governing the system, and we have
calculated the concentration field and the interface shape numerically.

We have determined the dependence on parameters of the critical speed for particle
capture, and reconciled the differences between two previous results (Temkin et al.
1977; Pötschke & Rogge 1989) for this system. We have further found that many
typical systems may obey a scaling significantly different than that indicated by
the previous results, which assume either strong or negligible dependence on the
interfacial energy. On the other hand, our calculations suggest that the effects of
kinetic undercooling and the electrostatic double layer are insignificant in typical
systems.

We have shown that the presence of solute in a particle–front system reduces
particle speeds by an order of magnitude, because constitutional undercooling greatly
increases the gap between the particle and the solidification front. We have compared
radii and front speeds required for particle capture and rejection, for saline, fresh
water, aluminium–copper alloy and pure aluminum, and found that the presence
of solute makes particle capture significantly easier. We have also calculated the
displacement of captured particles as a function of radius and front speed, for saline
and fresh water, and found that the displacement is frequently less than the particle
radius.

Finally, we have considered the case of bubbles interacting with a solidification
front. In this case we found that the large capillary migration dominates the
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interaction, suggesting that bubbles should be nucleated on the interface in order
to be captured.

Although quantitative experimental studies of particle–front interactions remain
scarce, we hope that this systematic theoretical investigation will help to fill the large
gap between existing experiments and idealized analytical results.

Justin C. T. Kao was partially supported by a James R. Everly fellowship at
Northwestern University. We are grateful to Professors M. J. Miksis and M.G. Worster
for their advice and suggestions.
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